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ABSTRACT 

This study compares the performance and robustness of single loop and cascaded 
bandpass delta-sigma analog-to-digital (A/D) converter architectures. A 4th order single 
loop modulator and a 4th order 1-1 cascaded architecture are designed to provide a basis 
for comparison of SNR performance and robustness to capacitor mismatch and finite 
operational amplifier gain variations. Several different approaches to the design of error 
cancellation circuitry in the cascaded architecture are presented. 

MATLAB simulations of the two architectures is used to show that the single loop 
modulator yields better SNR performance than the cascaded modulator. Both 
architectures perform comparably under capacitor mismatch variations. The effects of 
operational amplifier gain on both architectures are insignificant for gains greater than 
about 8,000. 
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CHAPTER 1 

INTRODUCTION 

1.1    Analog-to-Digital Conversion 

There are many methods for performing analog-to-digital conversion. Conventional 

methods, such as flash AID or successive approximation converters, sample their analog 

inputs at the Nyquist rate (i.e. twice the signal bandwidth). While such circuits have the 

advantage of simpler architectures, they also have several features that make them 

undesirable in large scale integrated circuits. These include requiring high precision 

analog components and stringent anti-aliasing requirements. 

Through the use of oversampling, however, complexity in the analog domain can be 

traded off for fast and more complex digital signal processing [1, 2, 3]. Because VLSI 

technology is better suited for fast digital circuits than precise analog circuits, high 

performance can be achieved using a low cost CMOS process. Furthermore, by 

oversampling, the quantization noise is spread out over a larger frequency band, so that 

the total amount of noise in the frequency band of interest is diminished. 

A baseline topology for an N-th order oversampling converter is a single-loop 

structure like the one depicted in Figure 1.1. In general, the quantizer can have many 

levels. Oversampling converters that use feedback are known as delta-sigma modulators 

[2]. 

The transfer function for a typical quantizer is shown in Figure 1.2. From a large 

scale perspective, the quantizer function seems to have a linear gain G, that clips at the 



maximum output level, A/2.  When the input signal to the quantizer results in a clipped 

output, the quantizer is said to be overloaded. At a finer level, however, the quantizer is 

Figure 1.1: N-th Order Single Loop Delta-Sigma Modulator 
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Figure 1.2: Quantizer Transfer Function 



truly a step function. For B bits of quantizer resolution, the difference between output 

levels, 5, is given by 8=^/(2 -1). 

Thus, the quantizer output can be represented by the input scaled by the gain plus 

an error signal: 

y[n] = Gx[n] + e{x[n]) (1.1) 

The nonlinear nature of the quantizer makes the A/D system difficult to analyze. The 

simplest model of the quantizer is the unity gain approximation: an approximate analysis 

based on a statistical estimate of the quantizer error which states that the quantizer error 

can be modelled as a unity gain with an additive white noise source if the following 

conditions are met [4, 5, 6]: 

The quantizer is not overloaded; 

The quantizer has a large number of quantization levels; 

-    The quantizer level separation, 8, is small relative to the signal level; and 

The joint probability density of any two quantizer input samples is smooth. 

The unity gain approximation, however, is not the only possible quantizer model. 

More intricate models using describing functions and the root locus method have been 

developed to take into account the variation of the quantizer gain under normal operation 

[4, 7]. Nevertheless, for a first order analysis and basic understanding of the operation of 

oversampling converters, the unity gain approximation is sufficient. Thus, under this 

approximation, the overall output of the converter can be expressed as 

Y(z) = H4z)U(z) + He(z)E(z) (l.2) 

10 



where U(z) and Y(z) are the z-transforms of the input and output signals respectively, and 

E(z) is the power spectral density of the quantizer error under the white noise 

approximation. Hx(z) is referred to as the signal transfer function (STF) and He(z) is 

referred to as the noise transfer function (NTF). Oversampling converters are designed 

such that in the frequency band of interest, the STF magnitude is approximately 1 and the 

NTF magnitude is much less that 1 in the band of interest. Out-of-band noise is 

amplified, but this noise is digitally filtered later. Modulators whose passband include 

only low frequencies are referred to as lowpass modulators, whereas modulators whose 

passband is between two nonzero frequencies, fj and f2 are referred to as bandpass 

modulators. 

By increasing the order of the noise shaping, the NTF attenuates more 

quantization noise in-band and the output of the modulator becomes a more accurate 

representation of the input. The main difficulty with such higher order, single loop 

structures, however, is stability. The stability requirements for a single loop modulator 

are [8]: 

The poles of the linearized transfer function must be inside the unit circle; 

The integrator amplifiers should not saturate; 

All integrators must have an initial state of zero; and 

-    The quantizer should not overload. 

For a 1-bit quantizer, however, the gain of the quantizer is a function of the input, and is 

therefore not determinate. Thus, the system is only conditionally stable and stability may 

depend on the amplitude of the input signal or on precise circuit matching. Through the 

11 



addition of control circuitry or the proper design of modulator coeffecients, however, 

higher order structures can be stabilized, and are widely used in many designs [9]. 

An alternative solution to the stability problem is to instead use multi-stage noise 

shaping (MASH) and cascade stable first or second order single-loop structures, as shown 

in Figure 1.3. The output of one stage becomes the input to the next stage after passing 

through what is known as an "error mixing network." Lambda is the error mixing 

First or Second Order 

Single-Loop 

Delta-Sigma Modulator 

yi 

vl 

beta 

First or Second Order 

Single-Loop 

Delta-Sigma Modulator v2 

y's = output of quantizer 

v's = input of quantizer 

lambda 

+ 

Subsequent 

Stages 

ERROR 

CANCELLATION 

NETWORK . out 

Figure 1.3: MASH Delta-Sigma Modulator 

coefficient, and beta is the error gain coefficient. Notice that if lambda=l, the input to the 

next stage is simply a scaled version of the quantization error of the previous stage. To 

eliminate the noise due to the additional quantizers, such cascaded structures also require 
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error cancellation circuitry, or filters which are designed to cancel out the quantization 

noise of subsequent stages. 

The chief problem with cascaded architectures, however, is that they can be more 

sensitive to capacitor mismatch errors and other non-idealities. Any error in the 

coefficients of the error cancellation circuitry result in the increase of the quantization 

noise that is seen at the output. 

1.2     Background Research 

The motivation for this research stems from the need at Draper Laboratory for an 

A/D converter with good resolution and high dynamic range to process the narrowband 

output signal of a precision sensor. There are three principle ways of approaching the 

conversion of a narrowband signal. One way is to mix the signal down to DC, and then 

perform lowpass delta-sigma modulation (Figure 1.4). The chief problem with this 

approach, however, is that the output is susceptable to drift in the DC value of the input to 

the A/D converter as well as to 1/f noise. 

Another approach is to apply a low pass delta-sigma conversion prior to 

demodulation (Figure 1.5). However, this is not the optimal approach for processing the 

narrowband signal because the noise in the band of interest may only experience 

moderate suppression. Such designs have provided reasonable performance, but have not 

yet met the desired noise level specifications. 

13 
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Figure 1.4: Narrowband Signal Processing: 
Mix signal down to DC, then use lowpass modulator 
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Figure 1.5: Narrowband Signal Processing: 
Directly convert signal with lowpass modulator 
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A third way of processing the signal is to use a bandpass delta-sigma converter 

(Figure 1.6), which takes advantage of the narrowband nature of the signal to improve 

performance and power dissipation. 

QUADRATURE 

OUTPUT SIGNALS 

Figure 1.6: Narrowband Signal Processing: 
Directly convert signal with bandpass modulator 

Previous delta-sigma designs at Draper Laboratory have all utilized the second 

conversion method: direct application of a lowpass delta-sigma converter. Indeed, much 

of the literature focuses on lowpass delta-sigma conversion using a single-loop topology. 

However, cascaded architectures have gained increasing attention. A 1994 work by 

David Ribner [10] introduced bandpass cascaded architectures at a theoretical level, and 

comparative studies on a MATLAB level of the influence of non-idealities and 

quantization noise have been done by other researchers [11, 12, 13, 14]. The 

performance of some verified modulator designs and their performance is summarized in 

Table 1. The modulator requirements of Draper Laboratory are also included. As a basis 
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for comparing modulators, a performance factor based on Signal-to-Noise Ratio (SNR), 

bandwidth, and power consumption was devised: 

SNR-Hz/W = SNR + 10 log(Bandwidth) - 10 log(Power Dissipation) (1.3) 

Ref[15] Ref[16] Ref[17] Ref[18] Ref[19] Ref[20] Ref[21] Draper 
(Specs) 

Samp. Freq. 
(Hz) 

1.852M 42.8M 8M 160M 10M 80M 4M 1.28M 

Carrier 
Freq. (Hz) 

445k 10.7M 2M 5M 3.75M 20M ~ 20k-25k 

Bandwidth 8k 200k 30k 2.5M 30k 200k 25k 200 

SNR (dB) 63 57 56 84 77 72 99 114 

Power Diss. 
(mW) 

480 60 0.8 1000 130 49 2.5 <10 

Area (mm2) 24.5 

" 

1 10 4.32 2.73 1.5 <5 

Technology 

" " 

2u 
CMOS 

0.8u 
BiCMOS 

0.8u 
BiCMOS 

0.6u 
CMOS 

0.8u 
CMOS 

0.6u 
CMOS 

SNR-Hz/W 
(dB) 

105 122 132 148 131 138 169 157 

Architecture Bandpass 
Single- 
Loop 

Bandpass 
Single- 
Loop 

Bandpass 
Single- 
Loop 

Bandpass 
Single- 
Loop 

Bandpass 
Single- 
Loop 

Bandpass 
Single- 
Loop 

Lowpass 
Cascade 

_ 

Table 1: Summary of Past Modulator Designs 
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1.3    Thesis Objective 

The objective of this thesis is to further explore bandpass delta-sigma conversion, 

and in particular MASH architectures, in light of the system requirements of Draper 

Laboratory. Thus, two architectures are considered in this work: 

1. A fourth order single-loop bandpass delta-sigma modulator; and 

2. A fourth-order 1-1 cascaded bandpass delta-sigma modulator. 

Both are analyzed with regards to their design issues, and the effects of non-idealities, in 

particular capacitor mismatch and finite operational amplifier gain. 

17 



CHAPTER 2 

A 4-TH ORDER SINGLE LOOP A-I MODULATOR 

2.1 Topology 

,th A block diagram for the 4   order single loop architecture is shown in Figure 2.1. 

From this block diagram, the NTF for this architecture can be found to be 

XTrAz2+(glcl-2)z + llz2+(g2c,-2)z + l\ (21) 

z4 + klz* +k2z
2 +k3z + k4 

where 

K =£ici + g2c3-4 + c4[a4+a3c3] 

k2 =2 + (g,c, -2)(^2c3-2) + c4[c2c3(a2+a1c1) + (^1c1 -2)(a4+a3c3)-a4] 

^3 - <?ici +<?2C3 -4 + c4[a4 +a3c3 -c2c3a2 -«4(^,0, -2)] 

/c4 
= 1    C4ö4 

The primary consideration in selecting the modulator coefficients is choosing the 

NTF such that the in-band SNR is maximized. As can be observed from the NTF 

expression, for bandpass modulators, NTF zeros come in complex conjugate pairs. As a 

result, only even-order bandpass systems are realizable. One possible choice is to place 

all the NTF zeros in the center of the band. In this case, high SNR is achieved near the 

center frequency, to the detriment of system performance at the fringes of the band. For 
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wideband systems, this is not an optimal placement. If the zero pairs are separated, and 

placed away from the center, then the performance at freqencies at the fringes of the band 

is improved at the expense of performance near the center of the band. At a certain point, 

for each system, there is an optimal placement of poles away from the center. For small 

bandwidth systems, however, coincident zeros at the center frequency yield optimal 

performance because most the input signals are concentrated at the center frequency 

anyway. 

The narrowband system required by Draper Laboratory has a bandwidth of 200Hz. 

Thus, all NTF zeros were placed at the center frequency of 20kHz. To facilitate the 

design of the remaining modulator coefficients, a Delta-Sigma Toolbox developed by 

Richard Schreier for MATLAB was used. A description of the Toolbox commands used 

is included in Appendix A. In this way, a set of coefficients that realizes the desired NTF 

with unity STF was computed. However, to ensure correct operation of the modulator, 

the integrators must not be saturated. Thus, the modulator coefficients must then be 

scaled according to the input amplitude range to prevent clipping. This was again 

accomplished using MATLAB to yield the following modulator coefficients and NTF: 

ai=0.3964 a2=0.3754       a3=0.4079        34=0.3890 

b,=0.3964        b2=0.3754       b3=0.4079       b4=0.3890       b5=l 

ci=0.0863 c2=0.2361       c3=0.4242       c4=1.4277 

gi=0.1116        g2=0.0227 

NTF . _ fa'-1.99z + l)'  
(z2 -1.49lz + 0.5652)(z2-1.687z+ 0.7865) 

20 



2.2 Predicted SNR 

A primary performance measure of A/D converters is the signal-to-noise ratio 

(SNR). The SNR is defined as the ratio of the output signal power to the noise power. 

Consider the SNR calculation for an L-th order real bandpass delta-sigma modulator with 

an input signal band of ±fß about a carrier fc and a sampling rate of fs. 

SNR = 10 log 
v^ 
v<, 

(2.3) 

where cx
2 is the input signal power and Gey

2 is the in-band noise power at the output. 

Under the unity gain approximation, the quantizer error, e[n], is modelled as white noise. 

Further assuming that the modulator output is filtered by an ideal bandpass filter (to 

remove all out-of-band noise), the in-band noise power can be expressed as 

< = J* ^-\He(ffdf (2.4) 
band  J s 

V2 

where ae = — and V is the amplitude of the input sinusoidal signal. 

Using these two equations, the SNR ratio for any system, given the NTF, He, can 

be found. A detailed derivation of the SNR for an Lth-order bandpass modulator can be 

found in [22] to yield the following result: 

21 



3a2(L + l)(2R)L+1 

4fcV 
SNR = lOlog v „2

JK*  '     dB (2.5) 

where L is the order of the modulator, and R is the oversampling ratio (fs/2fb), 

I        dLH(e'C0) i dL 

k = \co=(0  and co0 and 0% are the center frequency and bandwidth (in 
L(L-l)...l      dcoL 

radians) respectively. 

To calculate the expected SNR of the 4 order modulator specified in the previous 

section, a MATLAB function called Predict4.m was written. Using Predict4.m, the 

expected SNR at the output is computed to be 185.8 dB. The code for Predict4.m is 

included in Appendix B. 

Note that these SNR predictions consider the noise due to quantization noise only. 

In an actual implementation of a delta-sigma modulator, other circuit noise sources also 

factor into the overall SNR. However, for the purposes of comparing the single loop and 

cascaded architectures, only the SNR due to quantization noise is considered. 

2.3 Capacitor Mismatch and Finite Op Amp Gain 

Typically the integrators of the modulator are implemented using switched 

capacitor circuitry. An implementation of z/(z-l) is shown in Figure 2.2 and an 

implementation of l/(z-l) is shown in Figure 2.3. Note that these circuits are identical 

except their sampling clocks are reversed. 

To assess the effects of finite op amp gain and capacitor mismatch, the transfer 

function for the overall circuit must be computed in terms of the op amp gain (A) and the 

22 



capacitor values. The assumptions about the op amp used in this calculaton are discussed 

in the next section. 

Vco(t) 

Sample an Phil 

Figure 2.2: Switched Capacitor Implementation of z/(z-l) 

iPhi2 Phi2 

Cl 
Vriffl 

Phil 

Vco(t) 

Sample an Phil 

Figure 2.3: Switched Capacitor Implementation of l/(z-l) 
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2.3.1 Op Amp Modeling 

An ideal op amp is modelled as having a constant, but very large, open loop gain 

A, such that the output of the op amp, V„, is related to its input voltages, V. and V+ by 

K=A(V+-V_) (2.6) 

This equation, however, ignores the frequency dependency of the op amp gain. A typical 

op amp has a very large gain at DC, and at the -3dB frequency (which defines the 

bandwidth of the op amp) begins to roll off at -20 dB/decade, until finally dropping to 

unity at the crossover frequency. Once past the crossover frequency, the gain falls further 

and additional high frequency poles cause the gain to roll off faster. The phase of the op 

amp is also not a constant. At DC, the phase is zero, whereas by the crossover frequency 

the phase is at least -90°. Beyond crossover, higher frequency poles cause the phase to 

shift even more negative. 

A key performance factor of an op amp is its gain-bandwidth (G-B) product. 

Because the G-B product is a constant at a particular temperature, an op amp with a high 

DC gain has a smaller bandwidth than an op amp with a low DC gain. Depending on the 

design of the op amp then, the system may either be operating in the constant gain region 

below the 3 dB frequency, or in the 20 dB rolloff region between the 3 dB and crossover 

frequency. Thus, when assessing the effects of finite op amp gain, the gain that must be 

considered is not the DC gain A0 but the gain at the operating frequency A(fc). In 

simulations, A(fc) will be considered to vary from as low as 100 to as high as 5,000 and 

for simplicity, the phase is assumed to be zero. 
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2.3.2 Transfer Function Considering Non-Idealities 

With this op amp model in mind, the transfer function for the implementation of 

z/(z-l), the circuit of Figure 2.2, in terms of capacitor ratios and op amp gain can be 

found to be 

AC,        __, C,„-, 
Va,(z)_ Cl+(l + A)C2

<' ,c2* 
W 

C,+(1 + A)C2 

^ 1-z- 
when A goes to infinity       (2.7) 

Similarly, the transfer function for the implementation of l/(z-l), the circuit of Figure 2.3, 

is found to be 

- AC, C, 
yC0(Z)_    c, + (i + A)c2      ?    c2 

VC.(Z)     2        (1 + A)C2        ,       i_z-> 

C,+(1 + A)C2 

» q-  when A goes to infinity.   (2.8) 

By adjusting the state-space equation coefficients according to the transfer 

functions derived above, the effects of non-idealities are introduced in the MATLAB 

simulations. The results of such simulations are presented in Chapter 4. 
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CHAPTER 3 

A 4-TH ORDER 1-1 MASH A-E MODULATOR 

3.1    Topology 

A block diagram for the 4th order 1-1 MASH architecture is shown in Figure 3.1. The 

structure consists of two cascaded 2nd order single loop structures. However, the 

arhitecture is known as a 1-1 MASH because each stage contains one resonator in the 

forward path. In general, the two stages can have different modulator coefficients. 

However, in this system, because both stages are being sampled at the same rate, identical 

second order stages were used. 

Using an approach identical to that used in the design of the 4th order single loop 

modulator, the coefficients for the 2nd order sections comprising each stage of the MASH 

architecture were designed to be: 

a, = a3 = 0.4846 a2 = a4 = 0.1261 

b1=b4 = 0.4846 b2 = b5 = 0.1261 b3 = b6= 1.0000 

ci = c3 = 0.0992 c2 = c4 = 4.4286 

gi = g2 = 0.0971 

which gives a noise transfer function of 

z2-1.99z + l 
NTF = -^ —  (3.1) 

z2-1.219z + 0.4413 
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To prevent saturation of the second stage, X and ß were chosen to be 1 and 0.8, 

respectively. 
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3.2 Error Cancellation Filter Design 

3.2.1 Exact Noise Cancellation 

The error cancellation filters, Hi and Hi, are designed such that the quantization 

noise from the quantizer of the first stage is cancelled. Again, using the unity gain 

approximation, the following relations can be found from the block diagram: 

STFn u +NTFn 

STFd        NTFd   ' 

V        STFnrr     ■   NTFn F Y? = U7 +- — £, (3.3) 2     STFd    2    NTFd    2 

U2 = ßfä - V,) = ß[{A -1)7, - Et ] (3.4) 

OUT = H1Yl+H2Y2 (3.5) 

where U, U2, Yi, Y2, Vi, OUT, ß and X are as indicated in Figure 4.1; STFn and STFd 

are the numerator and denominator polynomials of the STF respectively; NTFn and 

NTFd are the numerator and denominator polynomials of the NTF respectively, and Ei 

and E2 are the power spectral densities of the quantization error of the first and second 

stage quantizers respectively. 

From these equations, OUT can be calculated in terms of Ui, Ei and E2: 

f 
OUT = 

STFn 

K^
+ß(x-l)JfFäH2J 

STFn 

STFd 
U (3.6) 

+ 
f STFn       ^ 
Hn+ß{A-\)~ -H0  -—- + ß- -H 

v   2    ^       >STFd    2y 

NTFn     n STFn 

NTFd       STFd    2 1    NTFd    2   2 
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However, because the STF is designed to be 1 this equation reduces to 

OUT = {Hl+ß{A-l)H2)U + V    1      H\ )    2>mFd 

NTFn 
E      "irn_H E     (3J) 

'     NTFd    2   2 

To cancel the quantization noise from the first stage quantizer, the coefficient of 

Ei is set to zero to yield the following requirement on H( and H2: 

(//, + ß(A - \)H2 )NTFn + ß{NTFd)H2 = 0 (3.8) 

Substituting the expressions for the NTF, this equation can be solved to find the H2 

required for exact noise cancellation in terms of Hi: 

H2 = 
'-0 l + k3z~l+z'2 

X + (ife, + {A -1>3 )z~l +{k2+A- l)z T«. (3.9) 

-1.1, „-2 where NTFn=l+k3z +z   and NTFd=l+kiz" +k2z" .  From this equation, we can see that 

one obvious choice for Hi and H2 would be: 

Hx=-ß{A + {kx+{A-\)k,)z-l+{k2+A-\)z-2)     and      H2=\ + k3z~'+z~2     (3.10) 

To calculate the SNR predicted by the theory, a MATLAB function called 

Model.m was written. This function takes as an input a sinusoid at the center frequency 
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and processes it according to the block diagram and the unity gain approximation: the 

input signal is filtered by the STF and NTF of each stage to compute Yi and Y2, which 

were then filtered by Hi and H2 and summed to compute the overall modulator output, 

OUT. Using Model.m, the expected SNR at the output is computed to be 193 dB. A plot 

of the output of the first stage and the modulator is shown in Figure 3.2. 
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Figure 3.2: Power Spectrum of 1st Stage and Modulator Output Signals 
for Exact Error Cancellation Filters 
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The chief problem with this selection of filters, however, is apparent from the 

spectrum of the modulator output: the noise is suppressed to levels at about -210 dB, but 

signal amplitude as also been attenuated by about 20 dB! The reason for this can be seen 

from the equation for OUT: for A,= l, the coefficient of U is Hi. Because Hi is itself a 

filter which attenuates in-band frequencies, the input signal is also attenuated. 

To avoid this problem, Hi should be set to a unit delay. In this case, an exact 

cancellation of the quantization error requires that H2 be an Infinite Impulse Response 

(IIR) filter. However, using an ITR filter in the error cancellation network results in a 

continuous, as opposed to quantized output, because the output can then take on values in 

between the quantization levels. To preserve the quantized nature of the output, H2 must 

be selected to be a Finite Impulse Response (FIR) filter. 

However, there is no FIR filter for H2 that can exactly satisfy equation (3.8) when 

Hi is selected to be a unit delay! 

Thus, the design of H2 reduces to a minimization problem: given that the error 

cannot be totally cancelled, what filter minimizes this error? There are many possible 

filters that could be designed in answer to this question. This study looks at two design 

approaches: one based on modelling the system in the frequency domain, and one based 

on modelling the system in the time domain. 
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3.2.2   Frequency Response Approximation 

P = 

One way to approach this problem is to model the frequency response of 

1 

X + {kx+{X- l)k3 )z~] +{k2+A- \)z -2 
as an FIR filter.   A plot of the frequency 

response is shown in Figure 3.3. 
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From this plot it can be observed that the magnitude of P(z) is essentially constant 

in the frequency band of interest. Approximating P(z) as a constant gain (henceforth 

referred to as the Gain Model) H2 can be found to be 

H2=-—(l + k6z~i+z'2)Hl where K is a constant. (3.11) 

From the magnitude plot of the frequency response, K was found to be 4.5, giving error 

cancellations filters of 

H,=z~x and      H2 = -5.625z'1 + 11.196z~2 -5.625z"3 (3.12) 

With this selection of error cancellation filters, Modelm computes the SNR to be 145 dB. 

A better approximation that adds a minimal amount of complexity involves also 

taking into account the phase information of the frequency response (Gain-Phase Model). 

At low frequencies, the phase drops linearly. Modeling P(z) as Kz"1 leads to error 

cancellation filters of 

Hx=z~x and      H2 = -5.625z"2 + 11.196z"3 -5.625z"4 (3.13) 

With these error cancellation filters, Modelm computes the SNR to be 149 dB over a 200 

Hz bandwidth - a 5 dB improvement over the Gain Model for P(z). A plot of the ideal 

performance with this selection of error cancellation filters is shown in Figure 3.4. 
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3.2.3 Impulse Response Approximation 

Another design approach involves using the impulse response of P(z) to 

approximate P(z) as an FIR filter. A plot of the impulse response of P(z) is shown in 

Figure 3.5. From this plot, it can be observed that altough P(z) is an HR filter, after a 

delay of 17 units, the response has died down so that P(z) can be well represented by 

17 

I 
n=0 

P(z)^kX" (3.14) 
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The coefficients kn can be directly read off from the impulse response plot. If P(z) is 

approximated with all 18 coefficients, the result will be very good - near exact - error 

cancellation. Choosing fewer coefficients may result in a simpler system, but is also a 

poorer approximation of the impulse response. 

To get an idea for the tradeoff between complexity and performance, the SNR was 

computed using Model.m for n=l to n=17. The results are shown in Table 2. 

n SNR TdBl 

Tier 1: 
1 135 
2 137 
3 142 
4 150 

Tier 2: 
5 163 
6 163 
7 159 
8 160 
9 163 
10 167 

Tier 3: 
11 181 
12 181 
13 196 
14 186 
15 185 
16 187 
17 189 

Table 2: SNR Calculated for Varying Filter Lengths 

From the table we can observe roughly three levels of performance (labelled as 

Tiers 1, 2 and 3). The filters in Tier 1 have the lowest order. While being simpler in that 

filters with less coefficients generally require less hardware to implement them,   these 
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filters do not perform well in comparison with the Gain-Phase Model based filter 

presented in the previous section. 

The performance of the Tier 2 filters is better than that of the Gain-Phase Model 

filter, and has an SNR 20 dB higher than the filters in Tier 1. By moving up to the Tier 3 

filters, those that use the most coefficients of the impulse response, results very close to 

those that would have been attained with the exact error cancellation filter, had not the 

signal level also been attenuated, are achieved. 

3.2.4   Error Cancellation Filter Selection 

The design of error cancellation filters involves a tradeoff of performance with 

efficiency and robustness. Higher order filters have better SNR performance, but also 

generally require more hardware to implement, thereby increasing the power consumption 

of the overall system. Additionally, systems using error cancellation filters with more 

coefficients are generally also more sensitive to capacitor mismatch variations than those 

that use filters with fewer coefficients, because more parameters are being affected by the 

non-ideality. 

For the purposes of this study, the primary MASH architecture considered utilizes 

the Gain-Phase Model based error cancellation filters: 

H,=z~l and      H2 =-5.625z'2 + 11.196z"3 -5.625z"4 (3.15) 
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However, because the Tier 3 filters are expected to yield SNR performance 

comparable to that of the single loop architecture, the error cancellation filter designed for 

the model with n=17 is also considered: 

Hx = z'x 

and 

H2 =-1.25z-1 + 0.9642z~2 +0.4773z-3 +0.156\z~4 -0.0205z-5 -0.0939z~6 

-0.1054z"7 -0.087z"8 -0.0596z"9 -0.0342z"10 -0.0154z-11 -0.0036z-12 + 0.0024z-13 

+ 0.0045z-14 +0.0044Z"15 + 0.0034z-16 + 0.0022z-17 + 0.0039z~18 -0.0029z-19 

(3.16) 
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CHAPTER 4 

SIMULATION RESULTS 

4.1 Single Loop Architecture 

4.1.1 Simulated Performance 

MATLAB was used to simulate the modulator and test performance. All 

MATLAB code used for simulating the single loop architecture is included in Appendix 

B. The bulk of the code consists of using iteration to compute the output sequence given 

a sinusoidal input sequence. The quantizer is implemented as a comparator. 

The SNR of the modulator is calculated by using a test input sinusoid of 20kHz 

(the center frequency). The power spectrum of the output sequence is calculated. The 

SNR is given by the difference in decibels of the signal amplitude and the in-band noise. 

Thus, the SNR is found to be 186.4 dB in a 200 Hz bandwidth. 

This simulation result compares well with the 185.8 dB SNR predicted earlier. 

4.1.2 Effects of Capacitor Mismatch 

To assess the effects of capacitor mismatch and finite op amp gain, the equations 

derived in the previous chaper were coded into MATLAB. Assuming an op amp gain of 

1,000,000, capacitor mismatch variations were added to the nominal values. For 

variations of 10"4 (+/- 1% IG), 10"6 (+/- 0.1% IG), and 10"8 (+/- 0.01% IG) the system was 

tested over 100 runs, for which the SNR was recorded each time. The graph in Figure 4.1 
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summarizes the results of the data.  The individual histograms from which this plot was 

generated are included in Appendix D. 

Average, Minimum, and Maximum Output SNR vs Capacitor Mismatch Variance 

10"" 10" 
Capacitor Mismatch Variance 

Figure 4.1: Capacitor Mismatch Simulation Results for Single Loop Architecture 
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4.1.3 Effects of Finite Op Amp Gain 

The effects of finite op amp gain was determined by calculating the SNR of the 

modulator for the following gains: 100, 300, 600, 1000, 3000, 5000, and 10000. The 

results of these simulations is plotted in Figure 4.2. 

This plot demonstrates that in order to achieve near the ideal performance of the 

modulator, the op amp gain at the operating frequency must be kept above about 3,000. 
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4.2 MASH Architecture 

With the same methodology as applied for the single-loop modulator, MATLAB 

simulations were conducted to evaluate the performance of the MASH architecture. 

4.2.1 Gain-Phase Model Simulation Results 

With ideal integrators, the SNR is found to be 157 dB over a 200Hz bandwidth, a 

result better than that predicted in Chapter 3. This is because the calculation performed 

by Model.m uses the unity gain approximation. As mentioned in Chapter 1, the unity gain 

approximation is not a very good model of a 1-bit quantizer because it does not have 

many levels. Because the Gain-Phase Model does not attempt to exactly cancel the noise, 

however, the system still performs well, and indeed exceeds expectations. 

The results of the capacitor mismatch simulations and finite op amp gain 

simulations are shown in Figures 4.3 and 4.4, respectively. Histograms of the capacitor 

mismatch Montecarlo simulations are included in Appendix D. 

4.2.2 Simulation Results for Model with n=17 

With ideal integrators, the SNR is found to be 160.8 dB over a 200Hz bandwidth. This 

result is drastically poorer than that predicted by Model.m (-190 dB). One reason for this 

has already been mentioned: the unity gain approximation is not a very good model of 1- 

bit quantizers. The n=17 Model attempts to precisely cancel an error which cannot even 

be accurately determined by the unity gain approximation. As a result, what seems in 
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theory to be a more accurate and precise error cancellation filter, is in fact, a much poorer 

design. 

Capacitor mismatch montecarlo simulation results show that for a capacitor 

mismatch variance of 0.0001, the output SNR varies between 156.3 dB and 183.4 dB 

with an average SNR of 168.7 dB. The histogram giving this result is included in 

Appendix D. 

The results of the op amp gain variation simulations are illustrated in Figure 4.5. 
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4.3 Summary of Results 

Table 3 summarizes the results of the simulations presented above.   For ease of 

comparison the predicted results computed in previous chapters are also included. 

Predicted SNR Simulated SNR SNR Variation SNR Variation 
(dB) (dB) Given Cap. 

Mismatch (dB) 
With Finite Op 
Amp Gain (dB) 

Single Loop 186 186 184-189 127 - 182 
Modulator 
Gain-Phase 149 157 148-153 114-151 

MASH 
Modulator 

n=17 Model 189 160 156-183 114-145 
MASH 

Modulator 

Table 3: Summary of Predicted and Simulated Results 

From these results it can be seen that in terms of SNR performance, the Single 

Loop Modulator clearly performs better than the MASH Modulator. While using more 

error cancellation filter coeffients in theory gives as high an SNR as the Single Loop 

Modulator, in actuality the limitations of the unity gain approximation cause the MASH 

modulator to yield relatively poorer SNR performance. 

In terms of robustness, both architectures perform comparably. The Single Loop 

Modulator and Gain-Phase MASH Modulator vary by only 5 dB with capacitor mismatch 

variation. For op amp gains greater than roughly 8000 the effect of gain variation on 

SNR performance is also insignificant. 
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As expected from the analysis in Chapter 4, the n=17 Model MASH Modulator is 

much more sensitive to capacitor mismatch variations than the Gain-Phase MASH 

Modulator. The SNR performance is quite unstable, with a variation of 27 dB! 

Additionally, the n=17 Model MASH Modulator performance is also more negatively 

impacted by low op amp gain. With a gain of 10,000 the SNR is still 15 dB less than the 

ideal simulated SNR. 
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CHAPTER 5 

CONCLUSION 

The performance of two 4 order delta-sigma A/D topologies were analyzed: that 

of a single loop modulator, and that of a MASH modulator. MATLAB simulation results 

showed that given the same sampling frequencies, the single loop modulator yielded a 

higher SNR than the MASH modulator. Both architectures performed comparably with 

regards to robustness. However, MASH designs with higher order error cancellation 

filters are very sensitive to capacitor mismatch variations and finite op amp gain non- 

idealities. 

The reason for the poorer SNR performance of the MASH architecture involves a 

fundamental design issue of MASH modulators: designing an error cancellation network 

that can accurately cancel the first stage quantizer error. Several possible cancellation 

filter design approaches were presented. However, because of the limitations of the unity 

gain approximation, error cancellation filters designed based on this approximation do 

not yield good results. 

Once possible way of improving MASH architecture performance involves using 

a more accurate quantizer model based on describing functions. The design of delta- 

sigma modulators using model that combines describing function analysis, analytical 

modeling, and empirical approximation (Adaptive Gain Model) was presented by Louis 

Williams in his 1993 Doctoral Thesis [4]. In that work the Adaptive Gain Model was 

used to design a 3rd order 2-1 lowpass cascaded architecture.  Use of such a model was 



shown to yield results that allowed for the prediction of other effects such as the overload 

performance of the modulator. However, such an analysis is quite involved. More work 

needs to be done to further develop such methods. 

Another method of improving MASH architecture performance involves using a 

multi-bit quantizer in the second-stage, and thereby better satisfy the requirements for the 

unity gain approximation. The key concern in using multi-bit quantizers, however, is 

linearity. While with 1-bit quantizers the quantizer is ensured to preserve the linearity of 

the system, the use of multi-bit quantizers introduces additional errors and distortion from 

the quantizer. Applications with stringent linearity requirements seem to preclude the use 

of multi-bit quantizers. However, if the first stage is designed with a 1-bit quantizer, and 

only the second stage uses a multi-bit quantizer, then performance can be achieved with 

minimal effects on linearity: because the input signal of the second stage is a signal on 

the order of the quantizer error (i.e. small amplitude), the distortion introduced by non- 

linearity in the second stage quantizer is correspondingly smaller. 

In conclusion, while MASH architectures designed with the conventional unity 

gain approximation of the quantizer do not yield as good SNR performance as a single 

loop design, future work on the design of error cancellation filters and quantizer modeling 

may enable better and more comparable MASH modulator designs. 
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APPENDIX A 

Delta-Sigma Toolbox for MATLAB 

MATLAB's internal representation of the modulator is accomplished using the 
ABCD matrix. The ABCD matrix is essentially the state-space description of the 
modulator, and stores in matrix form the following equations: 

x(n+l) = Ax(n) + B[u(n) v(n)]' 

y(n) = Cx(n) + D[u(n) v(n)]' 

where x is the vector of state variables, y is the input to the quantizer, u is the input of the 
modulator, and v is the output of the modulator (and quantizer). 

Thus, the ABCD matrix becomes 

ABCD = [A B ; C D] using MATLAB notation. 

The following is a list of the Toolbox functions utilized in designing the modulator. 

A.l SynthesizeNTF 

ntf = synthesizeNTF(order=3,R=64,opt=0,H_inf= 1.5,f0=0) 
Synthesize a noise transfer function for a delta-sigma modulator. 

order = order of the modulator 
R =    oversampling ratio 
opt =   flag for optimized zeros 

0 -> not optimized, 
1 -> optimized, 
2 -> optimized with at least one zero at band-center 

H_inf = maximum NTF gain 
fO =   center frequency (1 ->fs) 

ntf is a zpk object containing the zeros and poles of the NTF. See zpk.m 
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A.2 PredictSNR 

[snr,amp,k0,kl,sigma_e2] = predictSNR(ntf,R=64,amp=...,fO=0) 
Predict the SNR curve of a binary delta-sigma modulator by using the describing function 
method of Ardalan and Paulos. 

The modulator is specified by a noise transfer function (ntf). 
The band of interest is defined by the oversampling ratio (R) 
and the center frequency (fO). 
The input signal is characterized by the amp vector. 
amp defaults to [-120 -110...-20 -15 -10 -9 -8 ... 0]dB, where 0 dB means 
a full-scale (peak value =1) sine wave. 

The algorithm assumes that the amp vector is sorted in increasing order; 
once instability is detected, the remaining SNR values are set to -Inf. 

Output: 
snr    a vector of SNR values (in dB) 
amp    a vector of amplitudes (in dB) 
kO     the quantizer signal gain 
kl     the quantizer noise gain 
sigma_e2 the power of the quantizer noise (not in dB) 

The describing function method of A&P assumes that the quantizer processes 
signal and noise components separately. The quantizer is modelled as two 
(not necessarily equal) linear gains, kO and kl, and an additive white 
gaussian noise source of power sigma_e2. kO, kl and sigma_e2 are calculated 
as functions of the input. 
The modulator's loop filter is assumed to have nearly infinite gain at 
the test frequency. 

A.3 RealizeNTF 

[a,g,b,c] = realizeNTF(ntf,form='CRFB',stf=l) 
Convert a noise transfer function into coefficients for the desired structure. 
Supported structures are 

CRFB    Cascade of resonators, feedback form. 
CRFF   Cascade of resonators, feedforward form. 
CIFB    Cascade of integrators, feedback form. 
CIFF   Cascade of integrators, feedforward form. 
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CRFBD   CRFB with delaying quantizer. 
See the accompanying documentation for block diagrams of each structure 

The order of the NTF zeros must be (real, complex conj. pairs). 
The order of the zeros is used when mapping the NTF onto the chosen topology. 

A.4 StuffABCD 

ABCD = stuffABCD(a,g,b,c,form='CRFB') 
Compute the ABCD matrix for the specified structure. 
See realizeNTF.m for a list of supported structures. 
mapABCD is the inverse function. 

A.5 MapABCD 

[a,g,b,c] = mapABCD(ABCD,form='CRFB') 
Compute the coefficients for the specified structure. 
See realizeNTF.m for a list of supported structures. 
StuffABCD is the inverse function. 

A.6 ScaleABCD 

[ABCDs,umax,S]=scaleABCD(ABCD,nlev=2,f=0,xlim=l,ymax=nlev+5,umax,N=le5) 
Scale the loop filter of a general delta-sigma modulator for dynamic range. 

ABCD   The state-space description of the loop filter. 
nlev   The number of levels in the quantizer. 
xlim  A vector or scalar specifying the limit for each state variable. 
ymax   The stability threshold. Inputs that yield quantizer inputs above ymax 

are considered to be beyond the stable range of the modulator, 
umax   The maximum allowable input amplitude, umax is calculated if it 

is not supplied. 

ABCDs The state-space description of the scaled loop filter. 
S The diagonal scaling matrix, ABCDs = [S*A*Sinv S*B; C*Sinv D]; 

xs = S*x; 
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A.7 CalculateTF 

[ntf.stf] = calculateTF(ABCD,k=l) 
Calculate the NTF and STF of a delta-sigma modulator whose loop filter 
is described by the ABCD matrix, assuming a quantizer gain of k. 
The NTF and STF are zpk objects. 
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APPENDIX B 

MATLAB CODE FOR SINGLE LOOP MODULATOR 

SIMULATIONS 

B.l Code for Calculating Expected SNR 

%%%%% PREDICT4.M %%%%% 

N=16*64*2048; 
fs=2*200*3200; 
time=[l:N]/fs; 
fin=20000; 
in=l; 
u=in*cos(2*pi*fin*time); 
el=2.5*(rand(l,N)-0.5); 

stfn=[l]; 
stfd=[l]; 
ntfn=conv([1 
ntfd=conv([1 

■1.99 1],[1 -1.99 1]); 
■1.491 0.5652],[1 -1.687 0.7865]); 

al = 0. 
a2 = 0. 
a3 = 0. 
a4 = 0. 
gl = 0. 
g2 = 0. 
bl = 0. 
b2 = 0. 
b3 = 0. 
b4 = 0. 
b5 = l; 
cl=0. 
c2 = 0. 
c3 = 0. 
c4 = l. 

3964 
3754 
4079 
3890 
1116 
0227 
3964 
3754 
4079 
3890 

0863 
2361 
4242 
4277 

newntfn=[l (gl*cl+g2*c3-4) (gl*cl-2)*(g2*c3-2)+2 
(gl*cl+g2*c3-4) 1]; 
constl=gl*cl+g2*c3-4+c4*(a4+a3*c3); 
const2=2+(gl*cl-2)*(g2*c3-2)+c4*(c2*c3*(a2+al*cl)+(gl*cl- 
2)*(a4+a3*c3)-a4); 
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const3=gl*cl+g2*c3-4+c4*(-c2*c3*a2-a4*(gl*cl-2)+a4+a3*c3); 
const4=l-c4*a4; 
newntfd=[l constl const2 const3 const4]; 

sigll=filter(stfn,stfd,u); 
sigl2=filter(newntfn,newntfd,el); 
Y=sigll+sigl2; 

SIGNAL=Y; 
CalcSNR; 

B.2 Capacitor Mismatch Monte Carlo Simulation Code 

%%%%%%%% MONTECARLO.M %%%%%%%% 

for i=l:100, 

A=10^6; 
C2 = l; 
Cl=l+0.003*randn(l,l); 
nl=Cl*A/(C2*(l+A)); 
n2=(Cl+(l+A)*C2)/(C2*(l+A)); 
n3=nl; 
n4=n2 
n5=nl 
n6=n2 
n7=nl 
n8=n2 

Fourth 
SIGNAL^out; 
CalcSNR; 
DATAl(i)=SNR 

end; 

B.3 Op Amp Gain Variation Simulation Code 

%%%%%%%% GAINVAR.M %%%%%%%% 

Gain=[100 300 600 1000 3000 5000]; 

for ind=l:length(Gain), 

A=Gain(ind); 
C2 = l; 
Cl=l; 
nl=Cl*A/(C2*(l+A)); 

55 



n2=(Cl+(l+A)*C2)/(C2*(l+A)); 
n3=nl, 
n4=n2 
n5=nl 
n6=n2 
n7=nl 
n8=n2 

Fourth 
SIGNAL=out; 
CalcSNR; 
DATAl(ind)=SNR 

end; 

th B.4 Calculation of Output of 4tn Order Single Loop 

2,0.0.0.0,0.0,    T?p\TTi->rpTT    i\>r    Q. o. Q. Q. Q, Q, Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q, Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q, Q, 6-6'6-&-6-S'6    rUUKin.Fi    -&-o-6'5-6-6-6-6-6-o-6-6-6-6-6-6-6-6-6-6-6-S-6-6-S-6-6-6-6-6-6-6-o-o-6-6-6-6-6 

Implements the iterative calculation of the output 
given the input. 
Also takes into account non-idealities of integrators 
Integratorl=nlz/(n2z-l) 
Integrator2=n3/(n4z-l) 
Integrator3=n5z/(n6z-l) 
Integrator4=n7/(n8z-l) 

ABCDsn = 
0.3964; 

0.4096; 

0.4079; 

0.5620; 

0]; 

:i.oooo 

0.0863 

0 

0 

0 

■0.1116 

0.9904 

0.2361 

0.1001 

0 

0 

0 

1.0000 

0.4242 

0 

0 

0 

-0.0227 

0.9904 

1.4277 

0.3964 

0.4096 

0.4079 

0.5620 

1.0000 

al=0.3964 
a2=0.3754 
a3=0.4079 
a4=0.3890 
gl=0.1116 
g2-0.0227 
bl=0.3964 
b2=0.3754 
b3=0.4079 
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b4=0.3890; 
b5 = l; 
cl=0.0863; 
c2=0.2361; 
c3=0.4242; 
c4=1.4277; 

ABCDs=[l/n2  -nl/n2*gl    0     0    nl/n2*bl 
nl/n2*al; 

n3/(nl*n4)*cl  l/n4-nl*n3/(n2*n4)*cl*gl    0     0 
n3/n4*(b2+nl/n2* 
bl*cl) -n3/n4*(a2+nl/n2*al*cl); 

0 n5/n6*c2 l/n6 
n5/n6*g2 
n5/n6*b3 -n5/n6*a3; 

0 n5*n7/(n6*n8)*c2*c3  n7/(n6*n8)*c3 1/nJ 
n5*n7/(n6*n8)*g2* 
c3  n7/n8*(b4+n5/n6*b3*c3) -n7/n8*(a4+n5/n6*a3*c3); 

0 0 0 c4 
b5 0 ] ; 

ABCD=ABCDs; 

OSR=32 00; 
fs=2*200*OSR; 
N=16*64*2048; 
in=l ; 
fin=2 00 0 0; 
time=[l:N]/fs; 
noise_in=0.0000001; 

u=in*cos(2*pi*fin*time)+randn(1,N)*noise_in; 

dcoff=-le-3; 
noise_ref=0.001; 
noise_pref=0.001; 
noise_nref=0.001; 
n=0, 
z=0, 
x=0, 
t=zeros(1,N); 
out=zeros(1,N); 
intl=zeros(1,N) 
int2=zeros(1,N) 
int3=zeros(1,N) 
int4=zeros(1,N) 
v=zeros(1,N); 
f=zeros(1,N); 

% Integrator DC Offset 
% Ref thermal noise 

b5 = l; 
cl=0.0863, 
c2=0.2361, 
c3=0.4242; 
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c4=1.4277; 

flag=0; 

for n=2:N-1 

% Comparator samples last integrator output first. 

v(n)=ABCD(5,l)*intl(n)+ABCD(5,2)*int2(n)+ABCD(5,3)*int3(n)+A 
BCD(5,4)*int4(n)+ 
ABCD(5,5)*u(n)+ABCD(5,6)*f(n); 

Quant2; 

% First Accumulator Stage 

z=dcoff+ABCD(l,l)*intl(n)+ABCD(l,2)*int2(n)+ABCD(1,3)*int3(n 
)+ABCD(l,4)*int4( 
n)+ABCD(l,5)*u(n)+ABCD(1,6)*f(n); 

if z>=2.5; 
disp('ouchl'); 

%  z=2.5; 
flag=l; 

elseif z<-2.5 
disp('ouchl'); 

%  z=-2.5; 
flag=l; 

end 

intl(n+1)=z; 

% Second Accumulator Stage 

z = - 
dcoff+ABCD(2,l)*intl(n)+ABCD(2,2)*int2(n)+ABCD(2,3)*int3(n)+ 
ABCD(2,4)*int4 
(n)+ABCD(2,5)*u(n)+ABCD(2,6)*f(n); 

if z>=2.5; 
disp('ouch2'); 

%  z=2.5; 
flag=l; 

elseif z<-2.5 
disp('ouch2'); 

%  z=-2.5; 
flag=l; 

end 

int2(n+1)=z; 
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% Third Accumulator Stage 

z=dcoff+ABCD(3,l)*intl(n)+ABCD(3,2)*int2(n)+ABCD(3,3)*int3(n 
)+ABCD(3,4)*int4( 
n)+ABCD(3,5)*u(n)+ABCD(3,6)*f(n); 

if z>=2.5; 
disp('ouch3'); 

%  z=2.5; 
flag=l; 

elseif z<-2.5 
disp('ouch3'); 

%  z=-2.5; 
flag=l; 

end 

int3(n+1)=z; 

% Fourth Accumulator Stage 

z = - 
dcoff+ABCD(4,l)*intl(n)+ABCD(4,2)*int2(n)+ABCD(4,3)*int3(n)+ 
ABCD(4,4)*int4 
(n)+ABCD(4,5)*u(n)+ABCD(4,6)*f(n); 

if z>=2.5; 
disp('ouch4'); 

%  z=2.5; 
flag=l; 

elseif z<-2.5 
disp('ouch4'); 

%  z=-2.5; 
flag=l; 

end 

int4(n+1)=z; 

end 
out=f; 

B.5 Quantizer Code 

%%%%% QUANT2.M %%%%% 

if v(n)>0.0; 
f(n)=2.50+randn(l,1)*noise_pref; 

end 
if v(n)<=0.0; 
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f(n)=-2.50+randn(l,1)*noise_nref; 
end; 

B.6 SNR Calculation Code 

%  SNR Calculation 

% Script expects input signal in SIGNAL, as well as fs and N 
defined 

disp('EXECUTE CalcSNR.m'); 

u=in*cos(2*pi*fin*time); 
spec=fft(u.*blackman(length(u))'); 
P=10*logl0((spec.*conj(spec))); 
NP=max(P(l:round(N*2*fin/fs+1000))); 

spec=fft(SIGNAL.*blackman(length(SIGNAL))'); 
P=10*logl0((spec.*conj(spec))); 
%P=P-max(P(l:round(N*2*fin/fs+1000))); 
P=P-NP; 
f=[l:N]*(fs/N); 
figure(1); 
plot(f(l:N/2),P(l:N/2)); 
grid; 
title('Sigma-Delta A2D Output Spectrum for 20kHz FS/2'); 
xlabel('Frequency [Hz]'); 
ylabel('Amplitude [Hz]'); 
axis([fin-1000 fin+1000 -300 0]); 

disp('Output Spectrum Calculation...Complete'); 

NBW=10*logl0(1.73*fs/N); 
Nl=round((fin-30)*N/fs); 
N2=round((fin-100)*N/fs); 
N3=round((fin+3 0)*N/fs); 
N4=round((fin+100)*N/fs); 
tmp=[P(Nl:N2) P(N3:N4)]; 
SNR=-(mean(tmp))-NBW; 

disp('SNR Calculation...Complete'); 

SNR 
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APPENDIX C 

MATLAB CODE FOR MASH MODULATOR 

SIMULATIONS 

C.l MATLAB Simulation Using Unity Gain Model 

N=16*64*2048; 
fs=2*200*3200; 
time=[l:N]/fs; 
fin=2 00 00; 
in=l ; 
u=in*cos(2*pi*fin*time); 
el=2.5*(rand(l,N)-0.5); 
e2=el; 

lambda=l; 
beta=0.8; 
BandErrCan; 

sigll=filter(stfn,stfd,u); 
sigl2=filter(ntfn,ntfd,el); 
Yl=sigll+sigl2; 

u2=beta*((lambda-1)*Yl+el); 

sig21=filter(stfn,stfd,u2); 
sig22=filter(ntfn,ntfd,e2); 
Y2=sig21+sig22; 

% overall output 
HYl=filter(Hl,[1],Y1); 
HY2=filter(H2,[1],Y2); 
OUT=HYl+HY2; 
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C.2 Capacitor Mismatch Monte Carlo Simulation Code 

%%%%%%%% MONTEC.M %%%%%%%% 

for ind=l:100, 

A=10"6; 
C2 = l; 
Cl=l+0.0 0 01*randn(l,l); 
nl=Cl*A/(C2*(l+A)); 
n2=(Cl+(l+A)*C2)/(C2*(1+A)); 
n3=nl; 
n4=n2; 

OptDes 
SIGNAL=OUT; 
CalcSNR; 
DATA2(ind)=SNR 

end; 

C.3 Op Amp Gain Variation Simulation Code 

%%%%%%%% GAINC.M %%%%%%%% 

Gain=[100 300 600 1000 3000 5000]; 

for ind=l:length(Gain), 

A=Gain(ind); 
C2 = l; 
Cl = l; 
nl=Cl*A/(C2*(l+A)); 
n2=(Cl+(l+A)*C2)/(C2*(l+A)); 
n3=nl; 
n4=n2; 

OptDes 
SIGNAL=OUT; 
CalcSNR; 
DATAl(ind)=SNR 
end; 
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C.4 Error Cancellation Filter Calculation Code 

%%%%% BANDERRCAN.M %%%%% 

% BANDPASS DELTA-SIGMA ERROR CANCELLATION FILTER CALCULATION 
% Requires G, beta and lambda defined prior to running 

G=l; 

% System Block Diagram Scaling Coefficient Values 
al=0.4846, 
a2=0.1261 
bl=0.4846 
b2=0.1261 
b3 = l; 
cl=0.0992 
c2=4.4286 
gl=0.0971 

% NTF and STF Coefficients 
kl=G*b3; 
k2=G*(b3*(gl*cl-2)+c2*(bl*cl+b2)); 
k3=G*(b3-b2*c2); 
k4=gl*cl-2+G*c2*(al*cl+a2); 
k5=l-G*a2*c2; 
k6=gl*cl-2; 
stfn=[kl k2 k3]; 
stfd=[l k4 k5]; 
ntfn=[l k6 1]; 
ntfd=stfd; 

% Calculate Error Cancellation Filters 
% Full Precision Exact Noise Cancellation Filters 
% Hl=-beta*[lambda k4+(lambda-1)*k6 k5+lambda-l]; 
% H2=[l k6 1]; 

% Approximate Noise Cancellation - 2nd Order H2 
K=4.5 
H1=[0 1 0 0]; 
H2=-K/beta*[0 1 k6 1]; 

% Approximate Noise Cancellation - More Accurate Method 
% M=17; 
% denom=[lambda  k4+(lambda-1)*k6   k5+lambda-l]; 
% sys=tf([l 0 0],denom,-l); 
% fir_resp=impulse(sys)'; 
% H1=[0 1 zeros(1,M+1)]; 
% H2=-(l/beta)*conv([0 1 k6 1],fir_resp(1:M)); 

ECl=conv(ntfn,(Hl+beta*(lambda-1)*H2)); 
EC2=beta*conv(ntfd,H2); 
ERROR C0EFF=EC1+EC2 
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C.5 MASH Architecture Simulation Code 

•Ö-5-6-&-Ö 

LambdaVector=[1]; 
BetaVector=[0.8]; 

G=l; 
FLAG=0; 

OPTL=0, 
OPTB=0, 
OPTSNR=0; 

for i=l:length(LambdaVector) 
for j=l:length(BetaVector) 

dispCNEW RUN' ) ; 
lambda^LambdaVector(i) 
beta=BetaVector(j) 
MyDes; 
if FLAG==1, 

FLAG=0; 
end; 

% Error Cancellation 
BandErrCan 

% overall output 
HYl=filter(Hl,[1],Y1); 
HY2=filter(H2,[1],Y2); 
0UT=HY1+HY2; 

if FLAG==0, 
SIGNAL=OUT; 
CalcSNR; 
SNR 
if SNR > OPTSNR, 

OPTSNR=SNR; 
OPTL=lambda; 
OPTB=beta; 

end; 
end; 

end; 
end; 
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C.6 Subroutine To Simulate System Until Error Cancellation 

%%%%% MYDES.M %%%%% 

ABCDs=[l -0.0971 0.4846 -0.4846; 0.0992 0.9904 0.1742 - 
0.1742; 0 4.4286 10]; 

al=0.4846 
a2=0.1261 
gl=0.0971 
bl=0.4846 
b2=0.1261 
b3 = l; 
cl=0.0992; 
c2=4.4286; 

ABCDs=[l/n2 -nl/n2*gl nl/n2*bl -nl/n2*al; n3/n2/n4*cl 
(l/n4-nl/n2/n4*cl*gl) 
(n3/n4*b2+nl*n3/n2/n4*bl*cl)  -(n3/n4*a2+nl*n3/n2/n4*al*cl); 
0 c2 b3 0] ; 

ABCD=ABCDs; 

OSR=32 00; 
fs=2*200*OSR; 
N=16*64*2048; 
in=2 ; 
fin=2 0000; 
time=[l:N]/fs; 
noise_in=0.0000001; 

u=in*cos(2*pi*fin*time)+randn(1,N)*noise_in; 
% u=randn(l,N)*noise_in; 
MyDes2; 
Yl=out; 
VI =v; 
if flag==l, 

FLAG=1; 
end; 

u=beta*(lambda*Yl-Vl); 
MyDes2; 
Y2=out; 
V2=v; 
if flag==l; 

FLAG=1; 
end; 
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nd C.7 Calculation of Output of 2na Order Single Loop Stage 

-6-&-&-6-Ö 

dispC SECOND ORDER SECTION'); 

dcoffl=-le-3;   % 1st Integrator DC Offset 
dcoff2=le-3;    % 2nd Integrator DC Offset 
noise_j?ref=0 . 001;       % Pref thermal noise 
noise_nref=0.001;       % Nref thermal noise 
n=0, 
z = 0, 
x=0, 
t=zeros(1,N); 
out=zeros(1,N); 
intl=zeros(1,N); 
int2=zeros(1,N); 
v=zeros(1,N); 
f=zeros(1,N); 

flag=0; 

for n=2:N-l 

% Comparator samples last integrator output first. 

v(n)=ABCD(3,l)*intl(n)+ABCD(3,2)*int2(n)+ABCD(3,3)*u(n)+ABCD 
(3,4)*f(n); 

Quant2; 
%   Quantizer 
% f(n)=v(n)+2.5*(rand(l,l)-0.5)/(2A4); 

% First Accumulator Stage 

z=dcoffl+ABCD(l#l)*intl(n)+ABCD(l,2)*int2(n)+ABCD(1,3)*u(n)+ 
ABCD(1,4)* 
f (n) ; 

if z>=2.5; 
disp('ouch'); 

%      z=2.5; 
flag=l; 

elseif z<-2.5 
disp('ouch'); 

% z=-2.5; 
flag=l; 
end 

66 



1       —  

intl(n+1)=z; 

% Second Accumulator Stage 

x=dcoff2+ABCD(2,l)*intl(n)+ABCD(2 
ABCD(2,4)* 
f (n) ; 

2) *int2(n)+ABCD(2 3)*u(n)+ 

if x>=2.5; 
disp('ouch'); 

%               x=2.5; flag=l; 
elseif x<-2.5 

disp('ouch'); 
%               x=-2.5; flag=l; 

end 

int2(n+1)=x; 

end 
out=f; 
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APPENDIX D 

HISTOGRAMS FROM CAPACITOR MISMATCH 

SIMULATIONS 

D.l Single Loop Architecture 

Single Loop Arch. - Cap.Mis.Var.=0.0001 

40 

35- 

30 

15 - 

10 

183      184      185      186      187 
SNR [dB] 

188 189 190 

Figure D. 1: Single Loop Architecture 
Capacitor Mismatch Histogram - Variance of 10"' 
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Single Loop Arch. - Cap.Mis.Var.=1(T 

184.5 185.5 186 
SNR [dB] 

186.5 187.5 188 

Figure D.2: Single Loop Architecture 
Capacitor Mismatch Histogram - Variance of 10"' 
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Figure D.3: Single Loop Architecture 
Capacitor Mismatch Histogram - Variance of 10"' 
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D.2 MASH Architecture (Gain-Phase Model) 
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Figure D.4: MASH Architecture (Gain-Phase Model) 
Capacitor Mismatch Histogram - Variance of 10"4 
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MASH Arch - Cap.Mis.Var.=1CTb 
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Figure D.5: MASH Architecture (Gain-Phase Model) 
Capacitor Mismatch Histogram - Variance of 10"6 
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MASH Arch - Cap.Mis.Var.=10~ö 
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Figure D.6: MASH Architecture (Gain-Phase Model) 
Capacitor Mismatch Histogram - Variance of 10"8 
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D.3 MASH Architecture (Model with n=17) 

MASH Arch - n=17 - Cap.Mis.Var.=0.0001 

170 
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Figure D.7: MASH Architecture (Model with n=17) 
Capacitor Mismatch Histogram - Variance of 10"4 
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